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Abstract. Complex variable techniques are used to determine the shape of the smouldering reaction front and the 
concentration of the oxidizer behind the front for steady smoulder propagation in a solid slab of exothermically 
reacting material. It extends an earlier free boundary problem of Adler and Herbert which considered diffusion 
controlled smoulder propagation in a half-space. The region behind the reaction front is assumed to be porous, 
the oxidizer diffusing from both planar surfaces to the front, where its concentration vanishes. Suitable scaling 
allows the oxidizer concentration to be expanded in powers of a small parameter. The resulting coupled differential 
equations for the coefficients are solved in terms of functional equations. Some consideration is given to the regions 
where the front meets the planar surfaces. It is shown that, close to the leading edge, the surface concentration 
varies monotonically with distance from the edge. 

1. Introduction 

Smouldering is a combustion phenomenon that lies between the extremes of negligible 
exothermic reaction and flame-like burning. It is known that smouldering only takes place in 
char forming materials [I], that is, a porous solid remains after the combustion process has 
passed through the material. The reaction is sustained and controlled by the rate at which 
oxidizer is able to reach the reaction zone, which lies between the char and unburnt solid. 

The initiation of smouldering can be defined theoretically in terms of turning-point bifurca- 
tions in a suitable parameter space [2,3]. These lie intermediate to those defining the quiescent 
state and flame-like burning. 

An asymptotic theory of steady smouldering in a half-space has been considered by Adler 
and Herbert [4]. It is based on earlier work of Ohlemiller [5], in which a thin reaction 
zone propagates parallel to a planar surface on which a constant oxidizer concentration 
is maintained. It is found that, to first order, the shape of the reaction front is parabolic, 
a consequence of the conditions at the reaction front where the concentration of oxidizer 
vanishes and where the rate of oxygen supply balances the rate at which fuel is consumed. 
The asymptotic theory of Adler and Herbert is not valid in the region where the reaction front 
meets the planar surface. Using Alt's method, Kerr [6] has computed the shape of the front 
and the oxidizer concentration in this region for various surface conditions. 

In the work presented below, the reacting material is confined between parallel planes with 
a thin reaction front moving with constant speed parallel to the surfaces. Constant oxidizer 
concentration is initially assumed on the planar surfaces behind the reaction front with the 
concentration vanishing on the reaction front. It is shown, however, that at the leading edge the 
planar surface concentration varies monotonically with distance from the edge. In the analysis 
of Adler and Herbert, the reduction of the equations to dimensionless form produced a single 
small parameter s. For the slab geometry considered here, a similar but not identical reduction 
introduces an additional mass transfer Pecltt number p. The problem has symmetry about 
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Figure I. Smouldering reaction front (SRF) and boundary conditions for a thin slab. 

the midplane; as s ip  --+ 0 the asymptotic solution derived by Adler and Herbert becomes 
relevant for the half-slab. For thin slabs, p = O(8), as demonstrated in the discussion below. 
The analysis which we give assumes this relationship between s and p. 

2. Conservation Equations 

Let the solid occupy the region - L  < y~ < L and take x ~ in a direction parallel to the surfaces. 
The fractional concentration of oxidizer Y'(x ' ,  y~) satisfies the 2D diffusion equation 

OY' ( 02y  ' 02y '  ~ 
Ot--- 7- = D ~ +  t ) 

(2.1) 

where t ~ is the time and D a constant diffusion coefficient. We assume that a thin smouldering 
reaction front (SRF) moves with constant speed u ~ parallel to the slab surfaces. Introducing a 
coordinate relative to the moving front, X '  = x t + Ct  ~, Equation (2.1) becomes 

u' OY' 02Y ' 02y  t 
D OX' = 0 - - ~  + Oy '2" (2.2) 

A schematic diagram of the smouldering process is shown in Figure 1. To the left of the SRF 
is a compacted region of unbumt fuel in which there is no oxidizer. In the porous region to 
the right of the front, oxidizer diffuses from the planar surfaces, where its concentration is 
specified, to the SRF where it vanishes. The rate of oxidizer diffusion to the front balances 
the rate at which fuel is consumed at the front [4]. The condition at the SRF may be written: 

, de (_or' or' dy'  
nop~u ~ = poD \ Oy' + OX' ~ ] ' (2.3) 

and 

Y ' = O  
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where po is the surface gas density, p~ is the fuel density and no is the stoichiometric coefficient 
of the reaction. If the SRF meets the plane of symmetry y = 0 at X '  = X~, then 

OY' 
- - ( X ' , 0 )  = 0, X '  _> X~ > 0. (2.4) 
Oy' 

Suitable plane surface conditions are 

OY' 
- - ( X ' , + L )  = 0 ,  X '  < X',, 
Oy' (2.5) 
Y ' (X ' ,  +L) = Y{), X '  > X~, 

where Y({ is the fractional surface concentration and X~, X I are to be determined such that 
o<xl <x~.  

3. Dimensionless Equations 

Put 

X = X' /L,  y = y ' /L,  Y = Y ' /YJ ,  (3.1) 

p = Lu ' /D,  P6clet number for mass transfer 

n0 

Equation (2.2) becomes 

OY 02Y 02y 
P a y  - o x ~ + Oy2 ' 

where 

OY 
- -  (X,  +1)  = o, x < x l ,  
Oy 

Y ( X , + I )  = 1, X > Xl ,  

oY (x,o) = o, x > Xo. 
Oy 

The conditions at the SRF are: 

dv or" ~ T 2  
P-d-2 = s - ~  + o x  ' 

and 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

Y = 0 .  

The parameter s involves the ratio of gas to solid density and is small, typically s ,,~ 10 -2. 
With a thin slab assumption, we pu tp  = )~s, where )~ is an 0(1) constant. Equations (3.3) and 
(3.5) now become 

OY 02y 02y 
As OX = ~ + ~Oy 2 , (3.6) 
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and at SRF: 

dy OY 
x d X  = ov  

Y = 0 .  

OY dy 
- - -  + O--X d X '  (3.7) 

4. The First Order Problem 

Ify = +f(X) is the equation of the SRF we now restrict attention to the region 0 < X _< Xo, 
f ( x )  _< y _< 1. 

With 

Y(X,y) = Yo(X,y) + AsYltX, y) + . . . ,  (4.1) 

substitution in (3.6), (3.7) gives 

O2yo O2yo 
OX---- ~ + ~ = 0 (4.2) 

at SRF: 

dy OYo OYo dy 
X dX = - O----y + O-X d X '  (4.3) 

and 

Yo = 0, 

with appropriate boundary conditions (3.4). 
From the second of Equations (4.3), 

OYo OYo dy = O, (4.4) 
OX + 0---~ dX 

which, together with the first equation, gives 

dy (Oro  Oro (Oro  (x- Oro . 

From (4.5) it follows that on the SRF, 

OYo o<_-~<x, 
1 OYo 1 (4.5) 

- i  x -< -ffb-u --- i x 

It is convenient to treat the above problem in terms of complex variables. The technique 
which we shall use is related to the Schwarz function method [7]. Complex variable methods 
have been shown by Howison [8] to be useful in solving moving boundary problems in fluid 
mechanics. 

Put 

Yo(X, y) = 1 + i[¢(z) - ¢(~')], (4.7) 
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where 

z = x + i ( 1 - y ) ,  

= x - i ( 1 - y ) ,  

and ¢(z) is a real function of the complex variable z. Expression (4.7) satisfies (4.2) and 
Yo(X, l) = l (z  = 3). Treating z and 2 as new independent variables, Equations (4.5) can be 
written 

1 dz  - d2 i [ ¢ ' ( z )  - ¢ ' (2 ) ]  ¢ ' ( z )  + ¢'(~') 
= (4.8) 

i dz + d2 = ¢'(z) + ¢'(~') )~ - i[¢'(z) - ¢'(~')]' 

from which it follows that 

4¢'(z) = iA (¢ ' ( z )  1 ) .  (4.9/ k¢'(~) 

On the SRF the concentration vanishes, hence 

Yo = 1 + i(¢(z) - ¢(~,)) = 0, (4.10) 

so that 

¢'(z) dz - ¢'(2) d2 = O. 

Substitution in (4.9) gives 

4¢'(z) = i A  ~zz - 1 . (4.11) 

Equation (4.11) expresses the fact that on the SRF, ~, is a function of z. Integration gives 

i A  ¢(z) = ~ - ( z -  z) + ½~, 

hence 

~ = z - i  ¢ ( z ) - ~ .  (4.12) 

On substituting for ~, in (4.10) 

¢(z) - ¢  ( z -  i~¢(z)  - 21 = i, (4.13) 

which is a functional equation for ¢(z). A solution may be written 

¢(z) = + b , (4.14) 

where b is a real constant. Although other solutions exist, the above form is appropriate since 
it leads to a parabolic shape for the SRF. From (4.10) 

b) ''2 b) ''2 + - + =i ,  
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hence 

2AX + 4b + 1 = A2(1 - y)2. 

Here b is a constant which shifts the profile parallel to the x-axis. Choose b = - ¼, then 

2 
~ X  = (1 - y)2 (4.15) 

is the equation of the SRF, and this meets the plane of symmetry, y = 0 where X = X0 = ½A. 
With (4.14) and b = -¼,  the solution to the 1 st order problem becomes 

= 1 - , , ~ 1 / 2  X - ~ + (1 - y)2 - X + , (4.16) 

which has a branch-point at X = XI = 1/2A, y = 1. 
Put 

Az 1 A 
- -  re i°, (4.17) 

2 4 2 

where (r, 0) are plane polar coordinates. Then 

Yo(X, y) = 1 - (2 l r )  1/2 sin ½0. (4.18) 

In this form the 'upstream influence' on the solution is clearly demonstrated. Without this 
effect a solution does not appear possible [9]. 

From (4.18), 

[VYo[ = (A/2r) 1/2 (4.19) 

hence on the SRF, where r = X + 1/2A, 

1 
IVYol = (X + 2 1)~)1/2" (4.20) 

The oxidizer flux through the SRF, from (0, 1) to (½A, 0), is 

IVY0[ 1 + k~--~) j dX 

---~ 1)k)l/2 1 + 2 - -~  dX = A, (4.21) 
so (X + 2 

giving a physical interpretation to the parameter A. 
Since the problem has symmetry about the midplane, y = 0, the equation of the SRF and 

solution for y < 0 may be obtained by reflection. Thus 

Yo(X,y)  = 1 - A  1/2 X -  ~-~ + ( 1  + y ) 2  - X +  , (4.22) 
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at the SRF: 

2 (1 + v) 2, x x  = 

where 

(4.23) 

O _ < X <  ½A, - l < y < O .  

To first order, the equation of the SRF in - 1  < y < 1 thus has a cusp at (½),,0). The 
appearance of a cusp on the plane of symmetry is clearly undesirable from a physical point 
of view. Some attempt to remedy this has been made in Section 6, below. Nearly cusp-like 
solutions have, however, been obtained by numerical integration of the equations for s << p 
[6a] 

The above problem, for a somewhat different physical situation and with A = 1, has been 
solved by Siegel [10] using conformal mapping. His solution is obtained in terms of elliptic 
functions and would not be useful for a development of our solution in powers of s. Unlike 
the 'simple' solution derived above it does not have a cusp-like behaviour on the plane of 
symmetry. Away from this plane the solution for the 'front' is nearly parabolic, as shown in 
Figure 5 of his paper. 

5. The Second Order Problem 

With (4.1) substituted in (3.6), the O(s) terms are 

o2y[ o2Y[ oYo 
o x  -----~ + oy 2 = o x  (5.1) 

In terms of variables z, ~,, as in (4.7), this can be written as 

o2Yt ' OYo oYo 
40zO~ = Oz + 0--~' 

(5.2) 

on using Equation (4.16). A solution of (5.2), which satisfies Y~ = 0 when z = ~,(y = 1), is 

Y l = 4  ~" 2 (5.3) 

where ¢(z) is a real function of the complex variable z, 
Consider conditions on the SRE From Equation (3.7) we obtain 

dX 
(5.4) 

hence 

dX + idy- + iOY-A) / "OY-A ) 
d X - i d v  ' 
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so that 

d2 

~ - ( ~  ~ ) / ( 7  2 ) "  (5.5) 

terms of O(s) ,  we obtain 

dz ~ 2 - 2 +~'(z) = O, 

which simplifies to 

d21 + i  [_~ ( ~ Z d z  ~),,2 -83 (~z  1 )  - . / 2  +~h'(z)] = 0. 

Integration gives 

e l (z )  = i ~-~ + i - i~b(z) + constant. (5.11) 

(5.9) 

(5.10) 

A further equation involving 21 and ~b can be found from the condition Y ( z ,  2) = 0. Substi- 
tuting (5.8) and noting that Y = Yo + AsYl + . . . ,  the terms of O(s) give 

zt ~ °  (z, ~o) + ~Yl(z,~?o) = O. (5.12) 

Hence 

From. the 1 st order problem 

[(~Z ¼) I/2 (? 41__11/2] 
Yo(z,  zo) = 1 + i - -- = O, 

(5.13) 

On the SRF, ~ is a function of z. Since Y ( z ,  2) = O, 

O Y  O Y  
0-~- dz + ~ d~, = 0, (5.6) 

which, combined with (5.5), gives 

d2 4 0 Y  z 
dz - 1 + ~ -~-z(,2(z)) = 0. (5.7) 

Put 

2(z) = ~o(z) + sez (z) + . . . ,  (5.8) 

where 

~o(~) = ~ -  X 

Here 20 is the 1st order solution to the shape of the SRE Substituting in (5.7) and equating 
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2 

Put 
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~)1/2 (Az0 ~)1/2 
- 2 = i .  

z =  - ~ =  +~. (5.14) 

2 4 5 Z2 X(z )=-~z  + +Kz,  

hence 

(5.16) 

(5.17) 

(5.18) 

(5.19) 

(5.20) 

(5.21) 

and Equation (5.11) can be written 

Z l = ~ ( ~ z a + i z 2 +  - iZ)) ig, 

where K is a real constant. 
From (5.16) and (5.17) we obtain 

a functional equation for ~b. Equation (5.18) can be simplified by setting 

in which case 

i Z) iK. 

The required solution of (5.20) is 

Then 
2 

z = v ( z  2 + i z ) ,  
(5.15) o 

~o = ~ ( z  2 - i z ) ,  

and (5.15) is the 1 st order parametric form of the SRF equation with Z a real parameter such 
that 0 _< Z < ½A. In terms of Z, Equation (5.13) becomes 
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Substitution of (5.22) in (5.3) determines II1, and in (5.13) zl, the constant K cancelling in 
both cases. Thus 

1 
g'l = ~-~ (1 + iZZ), (5.23) 

and 

2 
~o = ~ (Z 2 - i Z ) .  

The equation of the SRF becomes 

~" = ~o + s~q + . . .  

= ~ + ~ - ~ - i  -2-3-~- + . . .  

= X - i ( 1 - y ) .  

Hence 

2 Z2 s x = ~ + ~S + °(82)' 
2Z sZ (5.24) 

1 - V = T - 2 ~  + O(s2) .  

The SRF meets the plane of symmetry V = 0, where 

x =  ~ + ~  ~+ +o(82) ,  

and the upper surface V = 1, where 

8 x = ~ + 0(82). 

The effect of the perturbation is to shift the profile in the direction of the surface branch-point. 
Substituting (4.17) and (5.22) in (5.3) we find 

y ,=_r , /2  [ 2 1 ] O l - (5.25) 
3 (2A-) 1/2 4 (2A)I/2r 2 ]2 -2-" 

Finally 

Y(X,v) 

where 

1 - (2A)l/2r 1/2 sin 0 _ 
2 

_~8(r1/2 [ 2 1 ] 0 
3(2~-)1/2 4 (2A)l/2r sin ~+ 

1 (2A)l/2r3/2sin~} + ~  - -  + o(82), 

1 
X -  m = r c o s g ,  

2), 

1 - y = r sin0, 

(5.26) 
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which gives the concentration of oxidizer between the surface y = 1 and the reaction front. 
Equations (5.24) show that this may be written 

2 ( X _  s ) -  (1 - y)2 
~ (1 ~)2 + O(s2) • (5.27) 

3 

6. The SRF Turning-Point Region 

In solving the above free-boundary problem, no consideration has been given to the region 
where the SRF meets the midplane other than that the behaviour there is cusp-like. We seek 
here the oxidizer concentration and shape of the SRF under more realistic boundary conditions. 
The solution, which will be derived by methods similar to those above, is only valid in the 
neighbourhood of the SRF turning-point. 

Put 

Y ( X , v )  = 17o(x,v) + : ~ ? ~ ( x , v )  + . . .  (6.1) 

in Equation (3.6) and equate terms of like order. Then 

02170 02170 
O--X-- + ~ = 0, (6.2) 

02171 02171 017o (6.3) 
0-2-- + -Nry ~ =  o x "  

The conditions on the SRF are 

dy aY OY dy Y = O. (6.4) 
~ -  O~+a~dX, 

If the SRF meets the midplane at X = X0, then 

O---y-(X'O)=O' X > X o ,  i = 0 , 1 , 2 ,  . . . .  (6.5) 

7. The First Order Turning-Point Problem 

Put ~ = X + iy,  ~ = X - iy and consider 170 as a function of ~ and ~. A solution of (6.2) 
which satisfies (6.5) is 

17o = ~(¢) + ~(~), (7.1) 

where ~(~) is a real function of the complex variable ~. Consider the conditions on the SRF. 
From (6.4) 

(o% 

~,-ff~-u ] ~ -  t,?-g] 
(7.2) 



538 J. Adler 

hence 

(de - d() 

de + de 
0'(<) + ¢'(~) 

¢ ' (e ) -¢ ' (~)  
¢,(() _ ¢,(~) 

= ¢ ' ( ( )  + O ' ( ( )  - A" (7 .3 )  

From the last two expressions of (7.3) we obtain 

] A [~--7~ + 1 - 4¢'(<) = 0. (7.4) 

On the SRF, 

I7"0 = ¢(()  + ¢(()  = 0, (7.5) 

hence 

¢'(<) d< + ¢'(<) de = O. 

Substitution in (7.4) gives 

¢ ' ( ( )  = ~- 1 - , ( 7 .6 )  

which implies that here ( is a function of (. Integration gives 

), 
¢(()  = ~ (( - (), (7.7) 

where we ignore the possible additive constant iM, M real, since this only modifies O. 
Substituting 

4 
( = e - X,(e) 

in (7.5), gives 

( o(<) + ¢ e - ~ 

a functional equation for ~(().  The solution of (7.8) is 

(7.8) 

A 
cI,(<) = ~ < + b, (7.9) 

where b is a real constant. It is easily shown that this form is unique, the equation being 
reducible to a particular case of 'Babbage's equation' [11]. From (7.5), the equation of the 
SRF is given by 

~ (<+(1  + 2 b =  O, 

hence 
)~ 

?o(X,  v) = ~ (< + ~) + 2b 

= A ( X - X o ) ,  x>_xo.  (7.10) 
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8. The Second Order  Turning-Point Problem 

The equation for the component I21 becomes 

o27, o27, 
ox---~ + ~ = ~ (8.1) 

Let the equation of the SRF be 

X(V) = Xo + AsX,(y) + . . . .  (8.2) 

From Equations (6.4) we obtain 

oY~ (Xo, v) = 0 (8.3) 
OX 

and 

1 
Xt (V) = - ~ Y, (Xo, y). (8.4) 

A solution of Equation (8. I) can be written 

= ~ ¢~ + 9(¢) + ~(~), (8.5) ?, 

where ~(~) is a real function of ¢, and this satisfies condition (6.5). 
From (8.3), we obtain 

o + o ?, = ~ (~ + ~) + 9'(¢) + ~'(~) = o, 

when X = ½(~ - ~) = Xo. Thus 

A 
Xo + ~I,'(~) + ~'(2Xo - ~) = 0. (8.6) 

Integration gives 

,k X2 ' A_2 Xo~ + qd(~)-  kI '(2Xo- ~) = 

hence 

A Xo(Xo - ~), (8.7) ~I'(ff) - kI ' (2Xo - if) = 

a functional equation for ~I,(~). The required solution of (8.7), such that I?l = 0 when 
= ~ = Xo, is 

A 
~I'(~) -- - ~  [ a ( ~  - X o )  2 + X o ( 2 ~  - X o ) ] ,  

where A is a real constant. Substitution in (8.5) gives 

A 
f',(X,y) = ~ [(I - AI(X - Xo) 2 + (I + A)y2], 

(8.8) 

(8.9) 
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and from (8.4) 

1 
Xl(y)  = - ~  (1 + A)y 2. (8.10) 

Finally, the oxidizer concentration near the turning-point is 

sA 2 
Y ( X , y ) = A ( X - X o ) + - - f - [ ( 1 - A ) ( X - X o ) 2 + ( I + A ) y 2 ] + O ( s 2 ) ,  (8.11) 

and the equation of the SRF is 

sA 
X(y)  = Xo - -~  (1 + A)y 2 + O(s2). (8.12) 

Equation (8.12) shows that on the SRF near the turning-point, X = Xo + O (s) when y = O ( 1 ). 
On substituting this in (5.27) and matching like powers of s, we obtain X0 = 1/2A and 
y = O(s). This leads to a contradiction unless A = - 1  in (8.12). The oxidizer concentration 
near the turning-point thus becomes 

Y ( X , y )  = A(X - + ~ + (8.13) 

where 

0 _< X - ½,X _< O(s). 

9. The SRF-Plane Surface Corner Problem 

In considering smoulder propagation in a half-space, Adler and Herbert [4] failed to obtain 
an analytic solution near to where the SRF meets the plane surface. The numerical solutions 
of Kerr [6] appear to indicate that the shape of the SRF is parabolic in this region. In view of 
the solution to the 1 st order problem obtained in Section 4, it is of some interest to examine 
the complete equations in the comer regions. 

The parameters s and p may be scaled out of the equations by the substitutions 

P (sz' + u't'), 
= s2L 

(9.1) 

r / =  8 

Equation (2.1) becomes 

OY 02y 02Y 
O~ = - ~  + Or/-'--T' (9.2) 

and the conditions on the SRF become 

dr~ OY OY dr/ (9.3) 
= - 0---4 + " d -2 '  

and 

Y = 0 .  
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Introduce complex variables 

p = ~ + ir/ ,  t~ = ~ - Jr/, 

and consider Y as a function of p and f. Equation (9.2) becomes 

02y 1 0 Y  1 0 Y  
- -  - -  0 .  

OpO~ 4 0 p  4 0 ~  

Rearrangement of (9.3) gives 

dr/ 

hence 

which in terms of p,/5 is 

Since on the SRE Y(p, 15) = 0, we also have 

OY OY d15 
ap + o---pdG =0'  

which combined with (9.6) gives 

dp OY 
- 1 + 4-~-p (p, fi) = 0. 

dp 

Equation (9.8) implies that on the SRE ,O(p) is a function of p. In general, let 

y (p, fi) = ek(P+P)~ (p, fi). 

Equation (9.5) becomes 

02I 5 1 : 
Y = 0, 

Op 015 16 
and the conditions on the SRF are 

(9.4) 

(9.5) 

(9.6) 

(9.7) 

(9.8) 

(9.9) 

(9.10) 

= p(p) 

Op (p, ~) = -~ 1 - Up (9.11) 

Y(p, ~) = O. 

A solution of (9.10) may be written in terms of the Riemann-Green function 
Io (½ x/(P - w) (15 ' ~, where Io (t) is the modified Bessel function of order zero [ 12]. Taking 
the SRF as the datum curve, with A and B on the curve, 

OY 
15 (w, Co) = fAB IO( ½ ~/ (p -- w) (p -- Co) -~p dp. (9.12) 
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A \ I / I  (w,w) 

p=~ 

P 

Figure 2. Path of integration in the (p, ~) plane for determining the oxidizer concentration at the leading edge of 
the SRE 

Hence for points on the plane surface w = (2, (y' = L), and using (9.11) 

1 - - (1  ~)e-¼ (v+~) ~'(w,~) = -~ fABIO(½X/(p w)(/3 w)) -- dp. (9.13) 

Let the equation of the SRF near where it meets the plane surface be p +/3  = 0. The plane 
surface oxidizer concentration becomes (see Figure 2) 

11/2~ Io(½V/'-~ p2) dp Y(w,  to) = ~e 
o.) 

= e '/~ Io (½# - p2) dp, (9.14) 

where w is now a real parameter (~ = w). The integral in (9.14) may be evaluated for small 
w by use of the series expansion for Io(t). The result is 

1 2  1 3  r ( w , w )  = w + ~w + -~w + . . . .  (9.15) 

The dependence on to as to --r 0 may be compared with the result of Section 4 by setting 
w = A X .  

A different approach to the comer problem is possible using an analysis similar to that of 
Blackwell and Ockendon [ 13] for the continuous casting of a metal bar from a mold. 

Equations (9.3) can be combined to give the SRF condition 

Introduce new independent variables, u, v, given by 

+~0 = U2-- V2, 

r I = 2uv, 

(9.16) 

(9.17) 
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where ~0 is a constant to be determined. 
The coordinate transformation (9.17) permits a solution of (9.2) which depends only on v. 

The function Y(v )  satisfies 

Y "  + 2vY '  = 0, (9.18) 

with solution 

Y(v )  = 1 - erf(v)/erf(vo), (9.19) 

where v = vo is the equation of the SRF. 
Condition (9.16) on the SRF becomes 

Y'(vo) = -2v0.  (9.20) 

Substitution of (9.19) then shows that vo must be the solution of 

7rl/2voe v~ erf(vo) = 1. (9.21) 

The substitution v0 = zo/21/2 shows that this is identical to the equation for z0 derived by 
Adler and Herbert [4]. 

With ~o = -v2 ,  the equation for the SRF becomes 

= rl2/4v 2. (9.22) 

From (9.17) and (9.19), the oxidizer concentration in the comer region becomes 

/o TM Y(( ,  r/) --- 1 - e - t  dt e - t2  dr, (9.23) 

w h e r e  

, , =  _ v02)2 + , 2 } 1 / 2  _ + 

The result (9.23) shows that there is a branch point at (%2 0) and that the concentration is 
continuous on r / =  0. Near the origin, the surface concentration is found to be 

Y(G0)  = ~ + 1/2(1 + 1/2v2)~ 2 + . . . .  (9.24) 

In comparing (9.24) with (9.15) we note that the latter was only derived with the assumption 
that the SRF meets the planar surface at right angles. 

Discussion 

The close analogy between smoulder propagation in a slab and the continuous casting of 
a metal bar from a liquid pool has already been mentioned above. Numerical solutions for 
the latter problem, using a boundary integral method and more general surface boundary 
conditions, have been obtained by Dewynne, Howison and Ockendon [14]. 

For smoulder propagation in a half-space, Adler and Herbert [4] assumed a constant 
oxidizer concentration on the planar surface and a vanishing concentration on the SRF, 
producing a singularity at X = 0, y = 1. [9] has recently shown that this problem is not well- 
posed but may be made regular by assuming that in the comer region the surface concentration 
varies linearly with distance. Referring to the 1 st order problem of Section 4, we see that the 
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singular points (0, +1) are replaced by branch points at (1/2A, ::t:l) and that the oxidizer 
concentration is now continuous on the planar surfaces and SRF. 

To first order, the parameter A was found to represent the oxidizer flux through one-half of 
the SRF and by continuity this must also be the flux through one of the planar surfaces. By 
definition, A = p/s, where p = Lul/D, hence for constant s, A increases or decreases with p. 
The total 'length' g of the SRF, obtainable from Section 4, is 

1 + dX 
.10 

1 log[A + (1 + A2)1/21. ----- ( l  -[- ~2)1/2 _.[_ 

The SRF is thus stretched or shortened by an increase or decrease in p, provided A > 1. 
The above analysis is based on a thin slab assumption, namely, that the Pecldt number, p, 

for mass transfer is of the order of the small parameter s as defined by Equation (3.2). The 
definition of p involves the propagation speed, u ~, which is assumed known. This must be 
determined by considering the thermodynamics, chemical kinetics and material properties in a 
finite reaction zone. Some typical smouldering reactions are discussed in the paper by Drysdale 
[1]. Physically, it is seen that the oxidizer flux through the planar boundaries increases with 
~ and slab thickness L. The dominant term for the shape of the front is given by Equation 
(4.15), which shows that the front moves closer to the plane boundaries as the Peclrt number 
increases. 

Smouldering velocities are typically, ut ,,, 10-3 cm sec - t  [1], so that for a 2-cm-thick 
slab and reasonable values for D, p ,-, 10 - t  . Values of s depend on the material, but typically 
s ,,~ 10 -2, giving A N 10. 
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